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Abstract

Properties of eectronic components are intimately related to quantum physics
associated with the behavior of eectrons in a periodic crysaline structure environment.
Similarly, photons propageting in a periodic structure can exhibit behavior analogous to an
electron propagating in an eectronic crysta. Obvioudy, eectronic components/devices are
ubiquitous and have vastly changed our way of life. It follows that research into properties and
gpplications of photonic crystaline devices could lead to equaly widespread use and vaue to al
facets of society.

Typicdly, there can be one or more gaps in the range of dlowable energy an dectron
propagating in a semiconductor crystd can have. In the sense of how an eectronic device
functions, such forbidden energy band gaps can be fundamental. Anadogous band gaps can
occur for the alowable energies of photons propageting in a periodic didectric structure, i.e,
photonic crystd (PC). It isthisphysca property that we wish to exploit in thiswork.

The theory portion of this work involves using perfectly matched layer (PML) boundary
conditions, the R-matrix propagator agorithm, and a finite-difference frequency-doman modal-
expansion gpproach to cdculate antennaradiation. The antenna is mounted adjacent to afinite-
szed PC subdtrate and is driven a frequencies below, within, and above the band gap
associated with an infinite PC. The PC and antenna are invariant dong one dimension. The PC
consds of a two-dimensond finite-sized square array of dielectric rods with square cross
Section.

Numericd examples of radiation patterns are given for various frequencies. Typicd
numerica tasks include linear equation solution, matrix multiplication, and caculaing egenvaues
and egenvectors. Mogt of the computational effort involves repetitious caculation of



egenvdues and eigenvectors. To reduce walclock time, a complex pardld egensolver was
developed.



Introduction

We modd the photonic crystd (PC) and antenna structure as shown in Fig. 1. The
basic objective of this work is to solve Maxwell’s equations throughout the PC. The physicd
gze of the PC is Ly and L, inthe x and z direction, repectivdy, and within these finite
dimensions, the PC is periodic with period a. The PC is an array of square-cross-section
dielectric rods with permittivity e, embedded in a background medium with permittivity e, .
The top layer of the PC from z=1L, to z= L, +h is the antenna layer with permittivity e,
except for the antenna, which has permittivity e,. The vertical regions, which are shaded gray
near the left and right x limits of the PC, indicate the Berenger Perfectly Matched Layer (PML)
[1] absorbing regions which facilitate numerica caculation by preventing unwanted reflection
from the edges of the computational domain. The PML regions are designed to smulate an
infinite spatial domain by absorbing (with negligible reflection) any wave that reaches the edge of
the calculaion domain.

The Ly and L, dimensons of the PC are typicdly many waveengths in length and
because of the periodic nature of the PC, we know that possible solutions will generdly consst
of evanescent as well as propagating waves. The R-matrix propagator method [2-4] is proven
to be numericaly stable and well suited for problems having computationd domain szes which
can be many wavelengths in dimension. In addition, many computationa techniques are limited
to dructures where infinite periodicity is used to reduce the computationd size of the problem.
This redtriction must be diminated for devices and problems where periodicity in non-existent.
In this paper we present an implementation of Berenger's PML[1] formdism for the R-matrix
method to diminate this restriction. Also, we present results of a paralle complex eigensolver
for non-symmetric matrices.

Theory

Referring to Fig. 1, note the numerous horizonta dashed lines separating regions of the
PC. Theselinesindicate regionsthat are by definition z invariant and in this work, such regions
will be caled layers henceforth.  We will describe in this section how we find solutions to
Maxwdl’s eguations within a layer and then connect al layer solutions together. The problem
anadyzed here is two-dimensiona, and the PC structure consists of a truncated square array of
dielectric rods. The rectangular cross section antenna lies atop the PC and the antenna current
is assumed to have only ay component and to be uniform throughout the antenna cross section.
There are afinite number of rows of rods and each row has afinite number of rods in each row.
The example in Fig. 1 shows five rows with nine rods in each row. Each row of rods has a
homogeneous spacer layer in between. The superstrate z3 L, + h and substrate z £ 0O regions
are homogeneous and assumed to be vacuum.



Maxwell’s equationsand PML absorbing layers

In the context of a finite-difference-time-doman approach to solve Maxwdl’s
equations, Berenger [1] incorporated impedance-matched absorbing boundary layers. The
present work is done in the frequency domain, but we also want to incorporate the absorbing
layersin the vidinity of thex limits of the PC region. We assume exp (- iwt) time dependence.
The PML absorbing layers are characterized by anisotropy in the dectric s and magnetic s*
conductivity. For the case here where the PC and antenna current are y invariant, only
transverse eectric (TE) polarization is gppropriate and the following discusson will assume TE
polarization. In the time domain, the essence of a PML absorbing medium is to split the eectric
fied into two pats  E, = E, + E, and further distinguish between conductivity relating to
absorption dong the x (s,,s ) and z (s,,s,) directions. However in this two-dimensiond
work and in the frequency domain, fied splitting is not required. After some manipulation and
combining equations, the andlogous equations to Berenger’ 1] work can be shown to be
equivdent to
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where J (X, 2) isthe antenna current and for brevity we define
e (x2) =e(x,2) +4pis, (x,2)/w , m(x2z) =1+4pis (x,2)/w , ©)
e,(x,2) =e(x,z) +4pis (x,2)/w , and m(x,2) =1+ 4is (x,2) / w. 4

Note that we write the antenna current as a function of x and z, but we assume the current is
zero everywhere outsde the antenna cross section but uniform within the cross section. Outside
of any PML region, the s, =s, =s,=s, =0, and Egs. (1)-(4) reduce to the usud form of
Maxwel’s equations. In Egs. (3) and (4), we aso make the smplifying assumption thet the
materid parameters (permittivity and PML conductivity) in certain regions are independent of
coordinate z. As pointed out earlier, z invariance gpplies to any PC region between adjacent
dashed lines shown in Fig. 1. We further note that thereis no need to creste a PML region that
has absorption for propagation in the z direction. This means that we st s, =s, =0
everywhere. After gpplying these smplifications to Egs. (1)-(4), we then combine these two
equations into a second order differentia equation as
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The finite-difference part of this work comes from discretizing the x dimenson into N
segments wherex =nDx and Dx = L/N. We approximate the x derivatives in Eq. (5) in
centered finite-difference form. Thisyidds
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In Eq. (6), the s, ands , are zero everywhere except in a PML region and impedance
meatching requiresthat weset s /e =s .

Thex coordinate is now a discrete variable, but the z coordinate remains a continuous
variable. Equation (6) is vdid in a layer of the PC where e(x), e (x) and n(x) are by
definition independent of zfor dl x. Since Eq. (6) isvdid a N discrete points x, we have N
coupled differentid equations for each zinvariant layer. All N differentia equations for a given
layer asin Eq. (6) may be concisdly written in matrix form as

% =ME(2) - dipwd/c® . (7)

Explicit x dependence notation and y component notation from Eq. (6) has been omitted and is
understood in Eq. (7) where M isa N~ N sguare matrix. The dectric fiedld E(z) and source
term J are N-element column vectors where each element corresponds to a discrete coordinate
X. The source term is zero everywhere except in the antenna region of the topmost layer. Since
M and J are independent of z the solution for the fields in a layer is draightforward by

diagondizationof M as S'MS=12% = :| , and thisyields the modd solutions
E(2) = S(exp(l 2)C., +exp(- | 2)C. )+4'°'W 1 ®)
_ adco
B(z) = é\WﬂS' (exp(l 2C, - exp(-12)C.) . 9)

The N” N sguare matrix Sin Egs. (8) and (9) has columnsthat are the eigenvectorsof M and
the associated N eigenvaues are the dements of the diagond matrix | *. Clearly, we must
compute N eigenvaues and eigenvectors for each layer of the PC. The exp(zl z) are N” N
diagona matrices with the non-zero dements being exponential terms and C, are column
vectors of congtants. The arguments of the diagond terms in the exp(£l z) matrices contain N
pairs | that are the 2N roots of the diagona terms of the matrix | *. The solutions E and B,
arethey and x components of the eectric and magnetic fields, respectively, and these fidds are
continuous across layer boundaries.



R-Matrix algorithm

We discuss matrices in this section denoted by ri; and R;; (i = 1,2 and j = 1,2). These
matrices, which are indrumentd to the R-matrix agorithm, provide field relationships between
the boundaries of a layer and across two or more layers, repectively. This agorithm is
numericaly stable for computationd szes which are many waveengths in dimension and which
contain evanescent terms.

R-Matrix without sources

Equations (8) and (9) yidd solutions within a layer and in the following, we describe
how these solutions are related between multiple layers. For those layers which have no source
currents (i.e, J=01in Egs. (7) and (8)), the R-matrix dgorithm involves cdculaing a matrix
relationship between the eectric and magnetic fields at the boundaries of a z invariant layer of
thickness Dz. This rdationship hasthe form
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As shown in Fig.1, since dl the layers between z=0 to z= L, are source free, Eq. (10) can
be gpplied to each of these layers and the N” N r; submatrices relate the eectric and
meagnetic fields a the two boundaries of asingle layer. For each layer in the PC, the r;; matrices
can be cdculated by using Eqg. (8) (withJ = 0) and Eq. (9) in Eq. (10) and thisyidlds

r,,(Dz)= gé%gs(exp(l Dz) + exp(- | D2))(exp(l Dz) - exp(- | Dz)) *1 "'S™'m (11)
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and r,,(Dz)=-r,,(Dz) and r,,(Dz) = -r,(Dz). The N” N square matrix I is a diagona
matrix with non-zero dements obtained from Eq. (3). While Egs. (10)-(12) relate fidlds across
asngle layer, we aso need agloba relationship of the form

(2= 0)6 _ aR, (L) Ry(L)oaB(z=0)06
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that can span many layers. Smilar to the r;; matrices, the Rj; submatrices relate fields at
boundaries z=0 and z= L whichenclosedl zinvariant layers. By sequentidly caculating the
rij matrices for each layer in the PC, the R;; matrices can be computed by adding one layer a a
time [2-4] with recurgve rdations given by
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R,1(2)= 1,,(D9) (,4(D2) - Ry(z- D2)) 'Ry, (z- D2) (16)
Ry, (2) = 1,5(D2) - 1,,(D2)(114(D2) - Ryp(z- D2)) 'r,y(D2) . (17)

To dart the recurson with the initid layer, the Sarting point in Egs. (14)-(17) is evident when
z=0inEq. (10)and L =Dz inEq. (13) or R;;(Dz) =r,,(Dz) , where Dz is the thickness of

the initid layer. All layers can be of different thlckn&ss and repeated gpplication of Egs. (14)-
(17) yidds the matrix rdationship given in Eq. (13) for L = L,. With this we have related the

fieds across the PC up to, but not including, the source layer. The last layer, which includes the
antenna, is discussed below.

R-Matrix with sources

To include a source within the last antenna layer of thickness h we modify the Rmatrix
relationship andogous to Eq. (10) as
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where the subscript aon M, refers to the antenna layer. We next use Egs. (13) and (18) to
find
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Note that this equation explicitly contains R matrices evaluated a two different arguments. The
L, + h agument in the R matrices includes the PC dtructure and source layer. Likewise, the
L, argument includes only the PC structure. The ri; matrices pertain only to the source layer. In
order to solve this equetion for the surface fiddlds E(0), E(L,+h), B(0), and B(L, +h), we
need arelationship between the eectric and magnetic fieds.



Transmitted and reflected radiation field

We gpply continuity conditions that the tangentia field components of the dectric and
meagnetic fields are continuous acrossthe z=0 and z= L, + h interfaces. This alows coupling
with the fidds in the semi-infinite homogeneous supersirate z3 L,+h and substrate z£ 0. If
we denote the superstrate and substrate by + and — superscripts, respectively, then the
continuity conditions can be written as

E (0)=E() , B (0)=B(0) , (20)
E'(L +h)=E(L, +h) , and B(L,+h)=B(L,+h) . (21)

Since the superdtrate and substrate are homogeneous, the eectric and magnetic fields can easly
be related, and we use such relaionshipsin Eq. (19). Thisdlows E* and B to be calculated.

The power radiated away from the surface is proportiona to P* = A(‘ dx Ei(x,z)[Bi(x, z)]
and from this we cal culate the non-normalized distribution of radiated power to be

dPi _ W_/C n + + *
« " 2 cosq A [E k)(B* (k) ] (22)

where k = (w/c)sn q and g isthe polar angle of radiation messured from the z direction. Note

that the E and B fidds have been Fourier transformed into k-space since we are interested in
the angular digribution of radiation.

Numerical Results

For numericd andyss, we condder the PC shown in Fg. 1. All materid media are
assumed to be non-digpersve for al frequencies with the permittivity of the didlectric rods
e, =(9,0), the background medium e, =(1,0), and the wire antenna e, =(-100,30). The
uperstrate and substrate regions above and below the PC have permittivity (1, 0). The side
dimengion of the square rods is given by the fill factor of 0.156 or w =0.395a. In Fig. 1, the
PC conssts of 37 periodsin the x direction or L, =37a and 6 whole periods in the z direction
or L, =6a. Thedimensons of the rectangular antenna are width 0.5a and height 0.2a.

In the numerica results, the number of digitization points for the x dimensonis N = 701
which yields a spatid resolution of Dx =37a/N = 0.053a. The PML region on each side of
the PC condgts of 30 layers for a tota thickness of 30Dx. Within these layers,
s, (X) =e(x)s ,(x), and the conductivity is quadratically increased with depth into the PML
layersregion.



Calculated antennaradiation

In Fg. 2, the k-w disperson curves are shown for TE polarized electromagnetic wave
propagation in an infinite photonic crysta. The design parameters for the infinite PC are the
same as described for the finite-sized PC in Fig. 1. In other words, the x and z dimensions of
the PC for the dispersion data shown in Fig. 2 are unbounded. Figure 2 dso shows that thereis
aband gap that approximately spans w/c =0.32(2p/a)® 0.43(2p/a). The PCin Fig. 1 is
not infinite, but is nevertheess large enough so that the information in Fig. 2 can be gpplied to
the truncated PC. In Figs. 3, 4 and 5, we show the caculated antenna radiation at frequencies
below, within, and above the band gap edges. The frequencies marked by the arrows on the left
side of Fig. 2 are w/c =0.2(2p/a), 0.38(2p/a), and 0.5(2p/a). If w/c =2p/I , where| is
the free space wavelength for angular frequency w, then we see that these three w/c vaues
yidd|l =5a,| =2.63a,and| =2a, respectivedy. InFig. 3, it is seen that thereisradiaion in
both transmission and reflection. This is to be expected since the frequency is below the band
gap. InFig. 4, the frequency is within the band gap and there is no tranamitted radiation. Thisis
congstent with the existence of an energy band gap at this frequency. For comparison, the
dotted line shows the result for antenna radiation when a thick metd film having the same
permittivity as the wire antenna replaces the PC. The complex permittivity of the antenna is
assumed to be (- 100, 30). This radiated intendty is dightly less than that for the PC presumably
because of absorption by the metd. Finaly, Fig. 5 shows the radiaion pattern for a frequency
above the band gap. Here there is again some tranamitted radiation as well as much more
reflected radiation at larger angles when compared to Fig. 4.

Par alldlization Results

The computer code used to obtain numericd results involved egenvaue-eigenvector
computation, matrix-meatrix and matrix-vector multiplication, and linear equation system solution.
In the serid code, the bulk of computationd effort was spent on eigenvaue-egenvector
computation and this prompted the effort to develop a complex asymmetric eigensolver routine.
Thiswork resulted in the development of two new computationd routines. pzlahgr and pztrevc.

The egenvalues of a Hessenberg matrix A are obtained by computing the Schur
factorization T = Q" AQ, where T is upper triangular and the eigenvalues of A are the diagona
entries of T. The egenvectors can be computed by backward substitution. The complex
asymmetric eigensolver was modeled on the ScaL APACK [5] code pdlahar, which is designed
to compute egenvaues of a red non-symmetric matrix in pardld. In keeping with
Scal APACK notation, the new code, which computes eigenvaues of a complex non-
symmetric matrix in pardld, is named pzlahgr. The output from pzlahgr is used to then caculate
the egenvectors in pztrevc (based on the serid ztrevc). For the code used in this work, it is
required that process grids be chosen in square blocks of 1 1, 2 2, 3 3, etc. However, in
generd, pzlahgr and pztreve can use any size rectangular grid.

The performance of pzlahgr is shown in Figs. 6, 7, and 8. All performance runs were
done on the Origin 2000 a8 ERDC MSRC. Figure 6 shows time in seconds versus size of
problem N for serid and 1" 1 to 4” 4 process grid. Significant walclock reduction is evident but



the advantage gained when going beyond a 2 2 process grid rapidly diminishes. In Fig. 7, the
speedup relativeto al” 1 process grid, versus size of problem, is shown. Findly, in Fig. 8, the
megaflops versus size of problem is shown for seria and severd process grids.

Conclusions

We have presented theory and numerica results for radiation of a long antenna that is
flush mounted atop a finite-szed photonic crysta substrate. We have dso developed complex
non-symmetric eigensolver codes based on Scal APACK [5] methodology.

The numerica results for antenna radiation indicate that for a frequency within the band
gap, the radiation pattern is very smilar to that for a metallic substrate. While this indicates that
use of a PC would emulate the radiation characterigtics of a metal subgtrate, the big advantage
would be preventing potential heat damage. It has been estimated that heat absorption for a PC
relative to a Cu metal substrate would be about two orders of magnitude less[6]

Paralelization performance results have aso been presented for the eigensolver routine.
A speedup of about 3isseenfor a2’ 2 process grid relativeto a1’ 1 process grid. Going to a
4" 4 process grid yields a rdlative speedup of about 4. Prior to the UGC2000 Conference, only
a minima amount of benchmark testing has been accomplished. At this point the rapidly
diminishing speedup gains are likdy due to a smdl problem sze and much more extensve
tegting is forthcoming. In any case, Snce the bulk of the computationa time was originaly spent
with serid LAPACK complex asymmetric eigensolver routines, the development of the complex
pardlel egensolver routines promises to yield much decreased wallclock times.
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Figure Captions

Figure 1. Schematic showing modding of photonic crysta (PC) and antenna.  The crystd
period is a in both the x and z directions. The dark shaded squares are the dielectric rods of
sde width w and the antenna is the black rectangle, of thickness h, in the topmost layer. For
numerica andyss, the PC hastotd x length L, =37a and z length L, = 6a. The fill factor is
w?/a® = 0.189 and the materid parameters for the rods (dark gray) and background (light
gray) are e, =(9,0) ande, = (1,0). Thetwo vertica shaded aress &t the x limits of the PC are
absorption layers. Any two adjacent horizontal dashed lines indicate layers that are by definition
zinvariant with respect to materia parameters.
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Figure 2. Band dructure diagram for a two-dimensondly infinite PC with the dectric fied
polarized pardle to the rods. The horizontal shaded area indicates a complete band gap. The
three arrows indicate frequencies below, within, and above the band gap which are used in the
numerica andyss.
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Figure 3. Polar plot of radiation pattern versus radiation angle into the superstrate and substrate
for (w/c)=0.2(2p/a). At this frequency, which is below the band gap, there is radiation into
the subgtrate.
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Figure 4. Polar plot (solid curve) of radiation pattern versus radiation angle into the superstrate
for (w/c)= 0.38(2p/a). Since this frequency is within the band gap, there is no radiation into
the subgirate. For comparison, the dotted curve shows the corresponding caculation when the
PCregion z£ L, isreplaced by a metal with permittivity the same as thet for the antenna.
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Figure 5. Polar plot of radiation pattern versus radiation angle into the superstrate and substrate
for (w/c)=0.50(2p/a). At this frequency, which is above the band gap, there is some

radiation into the substrate,
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Figure 6. Eigensolver performance: time in seconds versus Size of problem N. The serid curve

(diamond) is compared with severa square process grids.
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Figure 7. Eigensolver performance: speedup relativeto 1 1 process grid versus size of problem
N. The serid curve (diamond) is dightly dower that the reference 1 1 process grid. The larger
process grids exhibit a relative speedup from 3-4 times.
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Figure 8. Eigensolver performance: megaflops versus sze of problem N. The serid curve
(diamond) is compared with severa square process grids.

Megaflops

(o2}
o

a1
o

N
o

w
o

N
o

Megaflops

-1

=1x1
2x2
3x3

- 4x4

3 4 5 6 7 8 9 10 11 12

Size of problem N (in hundreds

FIG. 8 (ELSON, FAHEY)

19



